Action Potential

Current Research

Investigation of Electro-mechanical Coupling in Neural Membrane-- Towards an Electro-mechanical Model of Nerve Pulse Propagation*


The project is connected to the basic research of neurodegenerative disorders and respective treatments involving implants and electrodes. The results would be more beneficial for a better understanding of neuronal function. With growing number of neurological complications in human population, the usage of electrically stimulating implants is growing. However, the basic phenomena under the nerve pulse transmission are not clearly understood. Besides the Hodgkin-Huxley hypothesis and model [1] about nerve pulse generation and propagation, in 2005 Heimburg and Jackson have proposed a thermodynamics-based hypothesis and model [2]. Therein the lipid phase transition and the associated electro-mechanical changes in the lipid matrix are attributed for the nerve signal transmission. The role of the lipid matrix in the nerve signal generation and propagation cannot be ignored and needs to be investigated both theoretically and experimentally.



Schematic representation of a bio-membrane with lipid bilayer and proteins embedded in it.


There are number of experimental findings in 1960’s that have significantly shown the coupling of electro-mechanical properties of lipid membranes. However, the intrinsic property of lipid-lipid chain transition affects the electro-mechanical properties and can be responsible for nerve pulse generation and propagation. It is indeed important to investigate this multi-parametric dependence both theoretically and experimentally. Therefore, the aim of this project is to investigate the electro-mechanical coupling of lipid membranes through theoretical procedures and to provide an electro-mechanical model for nerve pulse generation and propagation. Thus the multi-physics model for nerve signal transmission can be used in neurological implant studies like Cochlea and Deep Brain Stimulation models.


[1] A. L. Hodgkin and A. F. Huxley. Currents carried by sodium and potassium ions through the membrane of the giant axon of loligo., J. Physiol. London           116, 449– 472, 1952.

[2]  T. Heimburg and A. D. Jackson. On soliton propagation in biomembranes and nerves, Proc. Natl. Acad. Sci. USA 102, 9790–9795, 2005.



*Funded by DFG AP 259/1

Research Interests

  • Mathematical modeling of nerve signal generation and propagation
  • Realistic models of biological neural networks for the optimization of neurochips (based on FEM)
  • Modeling and simulation of biological systems ( e.g. brain) for implant studies and their interactions
  • Computational Neuroscience

Free and easy creation

I build my website
Your blog with